
Welcome back3 to CS439!



Quiz everyone say WHEEEEE!



while (true) {
check_feedback();

}

How was the quiz?

A. easy
B. mostly fine
C. mostly fine, but not enough time
D. too hard, but finished mostly in 

time
E. too hard and not enough time
F. too hard regardless of time



Stress

● 439H is not an easy class
○ Lots of new material
○ Unfamiliar programming environments
○ Fast, often relentless pace

● Struggling in this course is normal
○ There will be times you won’t know the answer or solution
○ This is expected - we want everyone to succeed, but the only way we can help is if you ask for 

it
● If you find yourself overwhelmed or spending more time on this class than you 

think you should be, please reach out to Dr. Gheith or the TAs
○ We can help out as far as the class goes
○ We can provide other resources if we are not able to help

Mental health resources available at UT

https://cmhc.utexas.edu


P3



check_feedback([]
(auto feedback) {

ASSERT(
feedback.max() != 'A'

);
}

}

How is p3 going?

A. thatʼs a thing?
B. Cloned the project.
C. Looked through the starter code.
D. Started planning/writing code
E. Done with at least one part of the 

project
F. Done with the whole project but 

still failing a couple test cases
G. p3 speedrun glitchless
H. passing t0



Why so many synchronization primitives?

● Imagine that we want to implement the core synchronization part as few times 
as possible
○ i.e. scheduling callbacks properly, queueing callbacks for later, etc.

● What fundamental primitives could we use to achieve this?
● Given synchronization primitive x, could you use it to easily implement y?



Semaphores!

● What is a semaphore?



Semaphores!

● What is a semaphore?
○ An example of a universal synchronization primitive
○ All the things you made in p2 can be done in terms of this!

■ (this is p3)
○ Contains a single counter representing how many people can use the semaphore before being 

forced to wait
○ Initialization: the counter is set to some integer value
○ down(work):

■ When the counter is greater than 0, decrement the counter and schedule work
■ Does not schedule work or do anything else until the counter is positive

○ up():
■ Increments the counter



How can we use a semaphore?

Let’s build a simple lock:

Semaphore sem{1};

lock(Work work) {

sem.down(work);

}

unlock() {

sem.up();

}



How can we use a semaphore?

How can I change this lock to allow 2 people to run at once?

Semaphore sem{1};

lock(Work work) {

sem.down(work);

}

unlock() {

sem.up();

}



How can we use a semaphore?

How can I change this lock to allow 2 people to run at once?

Semaphore sem{2};

lock(Work work) {

sem.down(work);

}

unlock() {

sem.up();

}



A note on throughput

Which one of these locks is better?

Semaphore sem{1};

lock(Work work) {

sem.down(work);

}

unlock() {

sem.up();

}

Atomic<bool> taken{false};

lock() {

while (taken.exchange(true)) {}

}

unlock() {

taken.store(false);

}



A note on throughput

Which one of these locks is better?

● A spinlock (right), well, spins/burns CPU cycles while waiting for the lock to 
be available
○ Useful if we expect the critical section to be really short - the overhead of switching to 

another task (and back later) might be higher than simply waiting for a bit

● A blocking lock* (left) will block* the task from running until the critical section 
is ready for it
○ Useful for longer critical sections where burning milliseconds of CPU time is just a waste

*p2/p3 doesn’t have blocking in the traditional sense where a thread’s execution is suspended and fully 
context switched out of. Instead we just don’t let the task associated with the critical section run.



Bonus: Monitors

● Monitors are mutexes (locks) + condition variables
● Condition variables support two main operations:

○ wait: Waits for the condition variable to be signalled
○ signal/notify: Schedules any tasks that are waiting

● Is this as powerful as a semaphore?



Questions?

credit to Meyer Zinn for the meme


