Welcome back? to CS439!

Quiz everyone say WHEEEEE!

How was the quiz?

. easy
while (true) { . mostly fine
Check_feedback() ; . mostly fine, but not enough time
} . too hard, but finished mostly in

time
too hard and not enough time
too hard regardless of time

Stress

e 439H is not an easy class
o Lots of new material
o Unfamiliar programming environments
o Fast, often relentless pace
e Struggling in this course is normal
o There will be times you won’t know the answer or solution
o This is expected - we want everyone to succeed, but the only way we can help is if you ask for
it

e If you find yourself overwhelmed or spending more time on this class than you
think you should be, please reach out to Dr. Gheith or the TAs

o We can help out as far as the class goes
o We can provide other resources if we are not able to help

Mental health resources available at UT

https://cmhc.utexas.edu

P3

How is p3 going?

. that’s a thing?
Cheizﬂiie?czaezlggii) { . Cloned the project.
. Looked through the starter code.
ASSERT(o Started planning/writing code
) feedback.max() !'= "A . Done with at least one part of the
, project
} . Done with the whole project but
} still failing a couple test cases

p3 speedrun glitchless
passing t0

Why so many synchronization primitives?

e Imagine that we want to implement the core synchronization part as few times

as possible
o i.e.scheduling callbacks properly, queueing callbacks for later, etc.
e What fundamental primitives could we use to achieve this?

e Given synchronization primitive x, could you use it to easily implement y?

Semaphores!

e What is a semaphore?

£
—

e ém‘\:www@g‘”’f‘

Semaphores!

e What is a semaphore?
o An example of a universal synchronization primitive
All the things you made in p2 can be done in terms of this!
m (thisis p3)
o Contains a single counter representing how many people can use the semaphore before being
forced to wait
o Initialization: the counter is set to some integer value
o down(work):
m When the counter is greater than O, decrement the counter and schedule work
m Does not schedule work or do anything else until the counter is positive
o up():
m Increments the counter

How can we use a semaphore?

Let’s build a simple lock:
Semaphore sem{1};

lock (Work work) {

sem.down(work) ;

}

unlock() A
sem.up();

}

How can we use a semaphore?

How can | change this lock to allow 2 people to run at once?
Semaphore sem{1};

lock(Work work) {

sem.down(work) ;

}

unlock() A
sem.up();

}

How can we use a semaphore?

How can | change this lock to allow 2 people to run at once?
Semaphore sem{2};

lock(Work work) {

sem.down(work) ;

}

unlock() A
sem.up();

}

A note on throughput

Which one of these locks is better?

Semaphore sem{1}; Atomic<bool> taken{false};
lock (Work work) { lock() A
sem.down(work) ; while (taken.exchange(true)) {}
} '
unlock() A unlock() {
sem.up(); taken.store(false);

A note on throughput

Which one of these locks is better?

e A spinlock (right), well, spins/burns CPU cycles while waiting for the lock to

be available

o Useful if we expect the critical section to be really short - the overhead of switching to
another task (and back later) might be higher than simply waiting for a bit

e A blocking lock™* (left) will block* the task from running until the critical section

is ready for it
o Useful for longer critical sections where burning milliseconds of CPU time is just a waste

*p2/p3 doesn’t have blocking in the traditional sense where a thread’s execution is suspended and fully
context switched out of. Instead we just don’t let the task associated with the critical section run.

Bonus: Monitors

e Monitors are mutexes (locks) + condition variables

e Condition variables support two main operations:
o wait: Waits for the condition variable to be signalled
o signal/notify: Schedules any tasks that are waiting

e |[s this as powerful as a semaphore?

N

Questions?

’ o £ ' s pow »
- = '

credit to Meyer Zinn for the meme

